
RESEARCH ARTICLE

Building a Social Network One Choice at a
Time
JordanW. Suchow*

Department of Psychology, Harvard University, Cambridge, Massachusetts, 02138, United States of America

* suchow@post.harvard.edu

Abstract
Newcomers to a social network show preferential attachment, a tendency to befriend those

with many friends. Here, we show that preferential attachment is equivalent to a form of

‘probability matching’ commonly found in studies of decision-making. This equivalence,

whereby newcomers probability match to a social signal akin to popularity, marries network

science to the study of decision-making and raises new questions about how individual psy-

chology impacts the social structure of groups. We asked people to view a visualization of a

social network and to select group members whom they would like to meet and befriend.

People varied in how strongly they weighed popularity and this was mildly correlated with

aspects of their personality. Individual differences in preferential attachment affect the struc-

ture and connectivity of the network that emerges.

Introduction
Many networks grow one by one as newcomers join an existing infrastructure. The World
Wide Web grows when a new page links to an established site, the citation network of the sci-
entific literature grows when a new article cites a published paper, and a social network grows
when someone makes a new friend. In each case, the newcomer links up with a chosen subset
of the network’s current members, and this choice is known to affect the global structure of the
network that emerges [1–3]. For example, if newcomers to a social network tend to befriend
those who already have many friends, a principal known as preferential attachment, the result-
ing network will have a hierarchy of hubs and outsiders, characteristic of many real-world net-
works [1].

Preferential attachment can be framed in terms of decision theory. One well-known princi-
pal of decision-making, Luce’s choice axiom, stipulates that when faced with a choice among
alternatives, a decision maker will exhibit ‘matching behavior’, selecting options with probabil-
ity proportional to their value [4, 5]. Matching behavior was originally studied in the context of
learning theory, where value is defined as the expected reward; thus if two levers offer reward
in a ratio of 2:1, an individual who displays matching behavior will press the more rewarding
lever twice as often [6, 7]. Here, in the context of network construction, value is assumed to be
social and akin to popularity. Specifically, we define the value attributed to the choice of
befriending a certain group member as the number of connections between that member and
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all the others. Sensitivity to popularity can arise as a byproduct of other mechanisms, such as
imitation [8] or homophily, a tendency to associate with others who are similar [9, 10].

In practice, it is common to consider a generalization of matching behavior in which a real-
valued parameter L determines the decision maker’s sensitivity to the value [7, 11]. In the soft-
max generalization of matching behavior, the probability of selecting option a from the set of
alternatives A is given by

PðaÞ ¼ vðaÞL
P

b2AvðbÞL
; ð1Þ

where v(x) is the value generated by x and where L determines the decision maker’s sensitivity
to the value [7, 11]. If L is zero, the newcomer is blind to value and therefore disregards popu-
larity. If L is positive, the newcomer is sensitive to value and prefers to befriend those who are
popular. If L is negative, the newcomer is sensitive to value but behaves in the opposite manner,
tending to befriend those who are unpopular.

The value of L used by a newcomer determines the structure of the resulting social network
(Fig 1). For example, setting L = 1 produces a scale-free network [1], setting L!1 produces a
star [3], and setting L! –1 produces a new family of networks, the demophobics (Fig 1, left-
most column).

By framing preferential attachment in terms of decision-making, it opens the door to new
questions about social networks that are inspired by the psychology of individual decision-
making. As a first step through that door, we relax the typical assumption in network science
that the whole population shares a common value of L, and instead suppose that, like many psy-
chological traits, it varies from person to person. We then measure these individual differences
and determine whether they are correlated with aspects of the decision-maker’s personality.

Methods

Participants
We recruited 600 people using Amazon Mechanical Turk, an online labor market where partic-
ipants complete brief tasks for pay [12, 13]. Recruitment was limited to participants from the

Fig 1. Social networks that arise when newcomers use popularity to guide their selection of friends. Starting with Euler in 1736, the study of network
topology has been couched in terms of graph theory, which represents individuals as nodes (drawn here as green circles) and a connection between two
individuals as an edge between two nodes (green lines). Together, the nodes and edges define a graph. The arrangement of the nodes on the page is
nonessential; what matters is who links to whom. The networks shown here were constructed through a process in which the newcomer samplesm times
(without replacement) from the distribution defined by Eq 1 and links up with whomever is selected [1]. Each network began as a complete (i.e., fully-
connected) graph withm+1 nodes (open circles) and grew with the arrival of newcomers (filled circles).

doi:10.1371/journal.pone.0133463.g001
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United States of America. Demographic studies of Mechanical Turk participants have found
that such workers are fairly representative of the population of US internet users, though on
average they are younger, have lower income, are more educated, and include more females
[14–16].

Ethics
Experiments were performed in accordance with Harvard University regulations and were
approved by the Committee on the Use of Human Subjects in Research under the IRB for the
Faculty of Arts and Sciences.

Procedure
All participants were provided with the same image (seen in Fig 2), which was said to depict
the structure of a social network (i.e., who is friends with whom). After looking at Fig 2 for at
least 15 seconds, participants selected two nodes from the network, representing two people
whom they would like to meet and befriend. Afterwards, for each selected node, participants
reported the number of links that they perceived between that node and the others in the

Fig 2. A visualization of a social network, used as the stimulus in the experiment. The image appeared to the participants exactly as it appears to you,
the reader.

doi:10.1371/journal.pone.0133463.g002
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network. Finally, participants completed a 10-item version of the Big Five Inventory, a test that
assesses personality along five dimensions: openness, conscientiousness, extraversion, agree-
ableness, and neuroticism [17]. The time required by the participants to complete all tasks,
including reading the instructions, was 127 s (95% CI [120, 135], bootstrapped with 106 sam-
ples, as per all CI’s reported here).

Stimuli
The stimulus was a visualization of a social network (Fig 2), created through the following pro-
cedure. First, we used the Barabási–Albert model to construct a 25-node scale-free network [1].
This is equivalent to the model based on probability matching, outlined in the caption of Fig 1,
with parameters L = 1 andm = 3. Next, we drew the network as a force-directed graph,
arranged using the D3 library [18]. Force-directed graphing is a visualization technique that
assigns attractive forces between nearby nodes and repulsive forces between distant nodes, in
such a way that edges have similar lengths and rarely cross [19]. Nodes were drawn as dark
grey circles and edges were drawn as thin lines connecting the nodes. Visualizing the network
as a force-directed graph trades off between two conflicting desires: first, to communicate the
network's structure in a format that is easily digested, and second, to avoid biasing the partici-
pant's choice by leading them to make a decision based on an incidental property of the visuali-
zation and not the network's structure. In force-directed graphing, the structure of the network
determines the placement of the nodes in the image, with more central nodes placed more cen-
trally. Choosing a format of visualization that is guaranteed to be inert with respect to the parti-
cipant's choice requires a deeper understanding of people's internal representation of network
structure.

Detecting individual differences in L
To test for the presence of individual differences in preferential attachment, we first measured
the correlation between the value of L used for each participant’s first and second choice of
friends. The best-fit value of L was computed separately for each participant, and separately for
the first and second choice. Eq 1 gives the probability density function of the participant's deci-
sion process. The first node was chosen from all the nodes in the network shown in Fig 2. The
second node was chosen from the same set of nodes, but with the participant's first choice
excluded. We placed a truncated-gaussian prior over L (μ = 0, s.d. = 5, truncated at ±10). The
maximum a posteriori value of L was inferred from the experimental data using the Metropo-
lis–Hastings variant of Markov Chain Monte Carlo (MCMC), which provides a sampling-
based approximation to a full posterior distribution [20]. MCMC was implemented using a
modified version of the MemToolbox [21], which, alongside the raw data (S1 Dataset) and
analysis scripts (S1 Scripts), is available in Supporting Information. The MCMC procedure
used five chains that were started at L = –8, –2, 0, 2, and 8, with gaussian proposal steps (stan-
dard deviation 0.1), tuned every 200 steps. Convergence between the chains was detected using
the method of Gelman and Rubin [22]. We collected 6,000 samples from the converged chains.
Individual differences in L lead to a positive correlation between the first and second selections,
with each participant using a consistent value L, but with that value of L differing across
participants.

Next, as a more thorough test of individual differences, we compared two models—one
without individual differences, and the other with them. In the first model, there is a shared
(but unknown) value of L across all the participants. As with individual choice behavior, we
placed a truncated gaussian prior over L (μ = 0, s.d. = 5, truncated at ±10). In the second
model, L varies across participants according to a gaussian distribution with unknown mean
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and variance. The prior on the mean was the same as in the fixed-Lmodel; the prior on the
standard deviation was lognormal (μ = 0, s.d. = 1). Maximum a posteriori means and standard
deviations, along with their credible intervals, were computed directly from these posterior
samples. Finally, the two models were pit against each other using the Akaike Information Cri-
terion with a correction for finite data [23].

Results and Discussion
After viewing a visualization of a social network, participants selected two people whom they
would like to meet and befriend. The average value of L across the population was 0.68 (95%
credible interval [0.35, 1.00]), with a standard deviation of 3.1 (95% credible interval [2.8, 3.5];
Fig 3a). With a population average above zero and below 1, on average participants fell in the
range of sublinear preferential attachment [24–27], but with individual participants falling
everywhere along the continuum from superlinear, linear, and sublinear preferential attachment,
to insensitivity, to sublinear, linear, and superlinear antipreferential attachment. There was a
positive correlation between the value of L used by a participant for the first and second selec-
tions (r = 0.49, 95% CI [0.41, 0.57]; Fig 3b), which is suggestive of individual differences in L.

The presence of these individual differences was confirmed by comparing the goodness of
fit of two models—one without individual differences in L, and the other with such individual
differences. The model with individual differences provided a better fit to the data (difference
in Akaike information criterion, 283). Furthermore, an individual’s best-fit value of L across
the two selections was correlated with the Big Five personality trait of extraversion (r = 0.17,
95% CI [0.09, 0.25]), but not with agreeableness (r = 0.03, 95% CI [–0.05, 0.10]), conscientious-
ness (r = –0.01, 95% CI [–0.09, 0.06]), neuroticism (r = –0.06, 95% CI [–0.14, 0.01]), or open-
ness (r = –0.04, 95% CI [–0.11, 0.04]). The mild correlation with extraversion suggests that the
participants used a decision process relevant to everyday social interaction, despite the task’s
simple and abstract format. Extraversion, in particular, is linked to sensitivity to social reward
signals [28].

Fig 3. Individual differences in sensitivity to popularity when selecting whom to befriend. (A) Distribution of the best-fit value of L across participants.
(B) Correlation between the best-fit values of L for a participant's first and second selections, fit separately.

doi:10.1371/journal.pone.0133463.g003
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How do individual differences affect the structure and connectivity of the resulting net-
works? Simulations revealed an interaction between the average value of L across the popula-
tion and the impact of individual differences on network connectivity (Fig 4). When L is less
than 1, individual differences push the network further towards a small-world architecture,
with short paths between members and high clustering, where one’s friends tend to know each
other. When L is greater than 1, the opposite occurs: individual differences push the network
away from being a small world. Critically, when L is close to 1, while the “scale-free” network
topology is distorted (Fig 4a), the small-world architecture remains the same (Fig 4b and 4c).
Thus, in our participants, whose average L is close to 1, the average behavior of the group tends
to mitigate the impact of their individual differences, preserving the small-world architecture
despite the variability.

In the same way that matching behavior can arise as a byproduct of other mechanisms, such
as sampling-based approximations to rational inference [11, 29], preferential attachment can
also arise as a byproduct of other mechanisms, such as imitation or homophily [8–10]. Framing
preferential attachment in terms of the psychology of decision-making is a step towards a uni-
fied account of the construction of social networks, one in which the observed structure and

Fig 4. The structure and connectivity of a growing network depends on the policy used by a newcomer when selecting its connections. (a) The
degree distribution specifies how likely it is for a person to have a particular number of connections. These are the degree distributions for three networks that
vary only in the standard deviation of L across the population (10,000 individuals, L = 1,m = 3). Introducing individual differences bends the degree
distribution away from being a straight line, the signature of a scale-free network. (b) Another measure of network connectivity that is affected by the
variability is the characteristic path length—the average distance between individuals. Notice the interaction between the direction of the effect and the value
of Lwith no effect of individual differences at L = 1. (c) A third affected measure of network connectivity is the local clustering coefficient, the proportion of
possible connections among one’s friends that actually exist, averaged across all people. We tested mean values of L between –5 and 5 in steps of 0.25, and
standard deviations of L between 1 and 4 in steps of 0.25. Each combination of parameter values was run once, withm = 3 and 10,000 nodes.

doi:10.1371/journal.pone.0133463.g004
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connectivity of real-world networks provides a test bed for psychological theory, and in which
psychological theory constrains the mechanisms that might give rise to that structure.

Supporting Information
S1 Dataset. Data collected in the main experiments. Contains the participants’ choices, the
structure of the network they saw, and results of the personality survey.
(MAT)

S1 Scripts. A directory of analysis scripts.
(ZIP)
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